
Übungsaufgaben Datenbanken

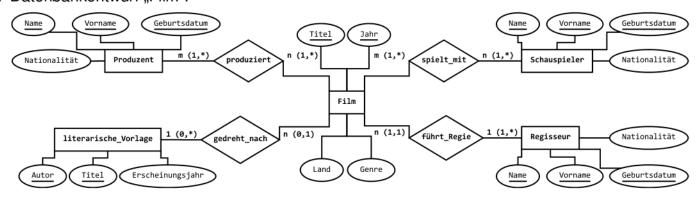
1 Transformation ins relationale Modell

Übersetzen Sie die gegebenen ER-Schemata ins relationale Modell.

1. Datenbankentwurf "Bandmitglieder":

Band (B_Name, Gründungsort, Gründungsjahr, Genre, Auflösungsjahr)

Fremdschlüsselbeziehung


Mitglieder (M. Name, Vorname, Geburtsdatum, Geburtsort, Geschlecht, B. Name)

Instrument (Bezeichnung, Tonumfang, Typ, benötigt Verstärker)

spielt (M. Name, Vorname, Geburtstag, Bezeichnung)

sinnvolle Änderung: Einführen einer M_ID als Schlüssel für Tabelle "Mitglieder"

2. Datenbankentwurf "Film":

literarische Vorlage (Autor, L Titel, Erscheinungsjahr)

, Fremdschlüsselbeziehung

Film (F Titel, Jahr, Land, Genre, Autor, L Titel, R Name, R Vorname, R Geburtsdatum)

Fremdschlüsselbeziehung

Regisseur (R_Name, R_Vorname, R_Geburtsdatum, Nationalität)

Produzent (P Name, P Vorname, P Geburtsdatum, Nationalität)

Schauspieler (S_Name, S_Vorname, S_Geburtsdatum, Nationalität)

produziert (F Titel, Jahr, P Name, P Vorname, P Geburtsdatum)

spielt_mit (F_Titel, Jahr, S_Name, S_Vorname, S_Geburtsdatum)

sinnvolle Änderung: Einführung von Kürzeln als Schlüsselmerkmale

② Normalisierung

1. Gegeben ist folgende Tabelle: **Musikstück** (<u>Nr.</u>, Titel, Interpret, Länge, Medien) mit z. B. folgenden Eintragungen:

Nr.	Titel	Interpret	Länge	Medien
001	Night Flanger	Yello	4:52	CDDA, LP, MC, audio/mp3, audio/opus
002	Die Mensch-Maschine	Kraftwerk	5:28	CDDA, audio/mp3, audio/opus

- (a) Begründen Sie, warum diese Tabelle nicht in der ersten Normalform (ENF) ist.

 Medien enthält Wertemengen (nicht atomar, Voraussetzung für ENF nicht erfüllt)
- (b) Überführen Sie die Tabelle in die ENF.

2. Eine DB enthält die Tabelle **Film** (<u>F_ID.</u>, <u>R_ID.</u>, F_Titel, F_Laenge, R_Name, R_Vorname, F_Jahr) mit u.a. folgenden Datensätzen:

F_ID	R_ID	F_Titel	F_Laenge	R_Name	R_Vorname	F_Jahr
ST01	RoW	Star Trek	132	Wise	Robert	1979
ST09	JoF	Star Trek Insurrection	103	Frakes	Jonathan	1998
ST11	JJA	Star Trek	127	Abrams	Jeffrey Jacob	2009
ST12	JJA	Star Trek Into Darkness	127	Abrams	Jeffrey Jacob	2013

- (a) Ist diese Tabelle in der ENF? Begründung! _Ja, da nur atomare Werte (Beding. ENF erfüllt)
- (b) Begründen Sie, wieso diese Tabelle nicht in der ZNF ist. Überführen Sie sie in die ZNF.

Es existieren Merkmale, die nur von einem Teil des Schlüssels abhängen: F_Titel, F_Laenge und F_Jahr nur von F_ID; R_Name und R_Vorname nur von R_ID.

Film (F_ID, F_Titel, F_Laenge, F_Jahr)
Regisseur (R_ID, R_Name, R_Vorname)
fuehrt_Regie (R_ID, F_ID)

3. Die Tabelle Band (B_ID, B_Name, Gruend-jahr, M_ID, M_Name, M_Vorname) ist in der ZNF:

B_ID	B_Name	Gruend-jahr	M_ID	M_Name	M_Vorname
Υ	Yello	1978	BoB	Blank	Boris
Υ	Yello	1978	DM	Meier	Dieter
ELO	Electric Light Orchestra	1970	JL	Lynne	Jeffrey
ELO	Electric Light Orchestra	1970	BeB	Bevan	Beverley

- (a) Warum ist sie nicht in der DNF? transitive Abhängigkeit von M_Name und M_Vorname über
- (b) Überführen Sie sie in die DNF. M_ID zum Schlüssel B_ID (Bedingung DNF nicht erfüllt)

```
Mitglied (M_ID, M_Name, M_Vorname, B_ID)

Band (B_ID, B_Name, Gruendungsjahr)

oder mit extra Tabelle [gehoert_zu (M_ID, B_ID)], falls Mehrfachmitgliedschaften mögl.
```

③ SQL-Abfragen (Terra-Datenbank)

Entwerfen Sie geeignete SQL-Anweisungen um die folgenden Informationen aus der Terra-Datenbank zu erhalten. Nutzen Sie z. B. den Abfrageeditor und modifizieren Sie gegebenenfalls den damit generierten SQL-Text. Die Zahl hinter der Aufgabenstellung ist die Anzahl der zu erwartenden Datensätze.

Empfehlung: Schreiben Sie Ihre SQL-Anweisung mit einem Texteditor (z. B. gedit), speichern Sie sie mit der Endung .sql und importieren Sie diese Datei mit phpMyAdmin. Vorteil: Sie können beim Entwurf der SQL-Abfrage die Tabellenansicht von phpMyAdmin nutzen.

Geben Sie Ihre SQL-Texte an. Die in der Lösung angegebenen SQL-Befehle sind nur Möglichkeiten. Andere Konstrukte können auch zum Ziel führen!

1. Landesteile und deren Einwohnerzahlen für Länder mit über 100 Millionen Einwohnern; absteigend sortiert nach Einwohnerzahl der Länder und Einwohnerzahl der Landesteile [89]

Hinweis: Verwenden Sie ...AND 'Landteil'.'EINWOHNER' IS NOT NULL... in der WHERE-Klausel, um die Ausgabe von Landesteilen ohne eingetragene Einwohnerzahl zu unterdrücken.

```
SELECT `Land`.`L_NAME`, `Landteil`.`LT_NAME`, `Landteil`.`EINWOHNER` FROM `Land`, 

`Landteil` WHERE `Land`.`L_ID` = `Landteil`.`L_ID` AND `Land`.`Einwohner` > 100000000

AND `Landteil`.`EINWOHNER` IS NOT NULL ORDER BY `Land`.`Einwohner` DESC,

`Landteil`.`EINWOHNER` DESC
```

2. Wüsten und deren Arten in Ländern mit einer Fläche von über 1 Million km², absteigend sortiert nach der Wüstenfläche [27]

Hinweis: Verwenden Sie ... GROUP BY 'W_NAME'... nach der WHERE-Klausel um doppelte Ausgaben zu unterdrücken.

```
SELECT `Wueste`.`W_NAME`, `Wueste`.`WUESTENART`, `Wueste`.`FLAECHE`,

`Land`.`L_NAME` FROM `Wueste`, `Land`, `Geo_Wueste` WHERE `Land`.`L_ID` =

`Geo_Wueste`.`L_ID` AND `Geo_Wueste`.`W_NAME` = `Wueste`.`W_NAME` AND

`Land`.`FLAECHE` > 1000000 GROUP BY `W_NAME` ORDER BY `Wueste`.`FLAECHE` DESC
```

3. Landeszugehörigkeit, Landeshauptstädte u. a. Angaben (SELECT *) von Inseln über 10000 km², absteigend sortiert nach der Inselfläche [18]

Hinweis: Verwenden Sie ...('Insel' NATURAL JOIN 'Geo_Insel')... in der FROM-Klausel um die Tabellen "Insel" und "Geo Insel" zu einer zu verbinden.

```
<u>SELECT * FROM (`Insel` NATURAL JOIN `Geo_Insel`), `Land` WHERE `Insel`.`FLAECHE` > 10000 AND `Geo_Insel`.`L_ID` = `Land`.`L_ID` ORDER BY `Insel`.`FLAECHE` DESC</u>
```

4. Mitgliedschaften in Organisationen von allen Ländern, deren Namen mit "Republik" oder "republik" enden [14]

```
SELECT * FROM (`Organisation` NATURAL JOIN `ist_Mitglied_von`), Land
WHERE `ist_Mitglied_von`.`L_ID` = `Land`.`L_ID` AND `Land`.`L_Name` like '%epublik'
```

5. Alle Länder, die am Meer mit der größten Tiefe liegen [14]

Hinweis: Verwenden Sie ...= (SELECT MAX('Meer'.'TIEFE') FROM 'Meer')... als Bedingung in der WHERE-Klausel um das tiefste Meer zu ermitteln.